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Abstract. pp̄ annihilation into two pions and three pions is studied in a baryon exchange model. Annihila-
tion diagrams involving nucleon as well as ∆-resonance exchanges are included consistently in the two- and
three-pion channels. Effects from the initial-state interaction are fully taken into account. A comparison
of the influence of the ∆ exchange on the considered annihilation channels is made and reveals that its
importance for three-pion annihilation is strongly reduced as compared to two-pion annihilation. It is found
that annihilation into three uncorrelated pions can yield up to 10% of the total experimentally observed
three-pion annihilation cross-section.

PACS. 13.75.Cs Nucleon-nucleon interactions (including antinucleons, deuterons, etc.) – 14.20.-c Baryons
(including antiparticles) – 21.30.Cb Nuclear forces in vacuum – 25.43.+t Antiproton-induced reactions

1 Introduction

Nucleon-antinucleon (NN̄) annihilation has attracted a
great deal of interest over the past two decades [1,2]. Al-
though recently the main emphasis has often been put
on meson spectroscopy and specifically the identification
of exotic mesonic states [3], one should not forget that
this process also offers a rich field in which various as-
pects of quark-gluon dynamics and/or hadron dynamics
can be tested. Indeed the development of a microscopic
model which describes the NN̄ interaction and, at the
same time, can account also for all phenomena associated
with the NN̄ annihilation into two, three, ..., mesons is a
rather challenging task for any theorist and has so far not
been achieved. With regard to NN̄ annihilation, models
based on quark degrees of freedom were the first ones to
be utilized in attempts to obtain a quantitative descrip-
tion of annihilation into two and three mesons. Their use
was prompted by the expectation that annihilation pro-
cesses might be a good place for detecting explicit quark-
gluon effects since relatively short interaction ranges are
involved. The pioneering works stem from Maruyama and
Ueda [4] and Green and Niskanen [5], followed by an
impressive series of studies carried out by the Tübingen
group [6]. (Cf. also ref. [1] for a comprehensive review of
quark model studies of NN̄ annihilation.)

a e-mail: betz@if.ufrgs.br
b e-mail: eav@if.ufrgs.br
c e-mail: j.haidenbauer@fz-juelich.de

Investigations of NN̄ annihilation relying on the more
traditional meson-baryon picture, where the annihilation
process is described by baryon exchange diagrams, were
initiated by Moussallam not long after the first works
within the quark model had appeared [7]. Subsequently,
the Jülich group carried out several studies based on this
approach [8,9] and more recently also Yan and Tegen [10,
11]. Those works indicate that the conventional hadronic
concept for describing NN̄ annhilation is capable of pro-
ducing results that are at least of the same quality as ob-
tained from quark-gluon models. However, all those stud-
ies concentrated on two-meson annihilation channels only.
This is certainly an unsatisfying situation because it would
be interesting to see whether the baryon exchange pic-
ture of NN̄ annihilation works similarly well for three-
meson decay as it does for the two-meson channels. Fur-
thermore, we wish to recall that the latest model by the
Jülich group [9] constitutes already an essential step in
achieving a unified description of NN̄ scattering and anni-
hilation. In this model the elastic and annihilation parts of
the NN̄ interaction are derived in a consistent framework
and, in addition, the transitions to two-meson channels,
NN̄ → M1M2, and the contributions of these two-meson
channels to the total NN̄ annihilation are described con-
sistently as well. Thus, it is important, but also challeng-
ing, to go a step further and include the three-meson decay
channels explicitly as well in this model.

In a series of recent works [12–15], we have used the
baryon exchange model to investigate proton-antiproton
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annihilation into three uncorrelated pions. By “uncorre-
lated”, we mean that these pions are not the decay prod-
ucts of an intermediate heavy-meson resonance. Of course,
annihilation into three pions is known to be dominated by
the formation and decay of intermediate states made up of
a pion and a heavy meson, and such processes have already
been studied in the baryon exchange model. The process
at hand only constitutes a relatively small background.
Yet such background contributions have been found sig-
nificant in phenomenological analyses of pp̄ annihilation
into π+π−π0 at rest [16,17] and it can be expected that
they need to be also taken into account in precise analyses
of annihilation into three neutral pions, which has recently
been the object of considerable interest [18–20].

Our investigation of annihilation into three uncorre-
lated pions was done in a distorted-wave Born approxi-
mation (DWBA), employing the most recent NN̄ model
of the Jülich group [9] for the initial-state interaction,
and guided by the same principles applied in that ref-
erence for the calculation of annihilation into two-meson
channels. The work was initiated with a study of the
pp̄ → π+π−π0 process [12], in a simplified model, in which
only nucleon exchange was included explicitly in the an-
nihilation amplitude. The effect of ∆ exchange —which is
known to produce a significant enhancement of the cross-
section for annihilation into two pions [7,10]— was taken
into account in an approximate phenomenological fash-
ion, namely through a readjustment of the cutoff at the
NNπ vertex. In a subsequent paper [13], a first step in as-
sessing the shortcomings of this simplification was made
by comparing the pertinent results with those obtained
through explicit inclusion of the amplitudes involving the
exchange of one N and one ∆. Very recently, a further step
was taken with the inclusion of the annihilation amplitude
generated by double ∆ exchange [14,15].

Despite those achievements we have to concede, how-
ever, that there is still an inconsistency in our calculations
so far. The nucleon-antinucleon interaction developed by
the Jülich group is derived in a time-ordered formalism
and specifically also the amplitude for annihilation into
two pions is calculated in time-ordered perturbation the-
ory. In contrast, in order to avoid the proliferation of dia-
grams, the three-pion annihilation amplitude is calculated
in Feynman-type perturbation theory. This procedure im-
plies that the treatment of the off-shell behaviour of the
three-pion annihilation amplitude is different from that
used in the Jülich model of annihilation into two pions [9].
This shortcoming has been previously ignored. However,
it is of relevance now that we are able to calculate the two-
pion and three-pion annihilation channels involving N as
well as ∆ exchange in a consistent way. Therefore, we de-
cided to treat the two-pion annihilation amplitude in the
same fashion as the three-pion one, i.e. in Feynman-type
perturbation theory. Clearly, in such an approach NNπ
and N∆π vertex parameters taken from the work of the
Jülich group will no longer reproduce the phenomenology
of two-pion annihilation and a refitting is therefore neces-
sary. This means, in turn, that full consistency with the
Jülich NN̄ model, which we continue to use as the initial-

state interaction, will be lost. But this is excusable to a
certain extent because the annihilation channel in ques-
tion, NN̄ → 2π, yields only a tiny contribution to the to-
tal NN̄ annihilation cross-section [9]. On the other hand,
the NNπ and N∆π vertex parameters play a crucial role
for the NN̄ → 3π cross-section, as we will see and explore
in the present paper, and therefore it is rather important
to constrain them by the requirement of consistency be-
tween the two- and three-pion annihilation channels.

In this paper we present results of a combined study
of proton-antiproton annihilation into two and three pions
in a baryon exchange model. We start out from the two-
pion annihilation channel. We use available experimental
data on pp̄ → π+π− to determine the free parameters of
our model, i.e. the cutoff masses in the form factors at the
NNπ and N∆π vertices. The effects of different choices
for the analytical form of those vertex form factors are
explored as well. We then turn to three-pion annihilation
and discuss the relative importance of NN , N∆ and ∆∆
exchanges.

In sect. 2 we provide some details of our model. In par-
ticular, we specify the ingredients used for evaluating the
N and ∆ exchange diagrams for NN̄ annihilation into
two and three pions, i.e. the baryon-baryon-meson La-
grangians and the corresponding vertex form factors and
coupling constants. Furthermore, we give a short descrip-
tion of the NN̄ model that is employed for the initial-state
interaction and we outline how the amplitudes for NN̄
annihilation into two and three pions are determined in
distorted-wave Born approximation. Our results are pre-
sented and discussed in sect. 3. First, we consider the re-
action pp̄ → π+π− which is used for fixing the free param-
eters of our model. Subsequently, we examine the reaction
pp̄ → π+π−π0 as well as annihilation channels involving
only neutral pions (pp̄ → π0π0, pp̄ → π0π0π0). We show
results for total and differential cross-sections and also for
branching ratios from specific initial NN̄ states. The pa-
per ends with some concluding remarks.

2 The model

2.1 Distorted-wave Born approximation

The basis of the present work is the Jülich model for
NN̄ scattering and annihilation [9]. In this model heavier
mesons are treated as stable particles in the (successful)
description of NN̄ annihilation into two mesons. In ac-
cordance with this approach, the uncorrelated three-pion
channel is here considered separately from the channels in
which a pion and a heavy meson, which can decay into two
pions, are formed. When calculating the total cross-section
for annihilation into three pions, the contributions from
these channels are added incoherently. Neglecting interfer-
ences between the various channels seems acceptable for
the aim of this work, which is to perform an exploratory
study about the relevance of the uncorrelated three-pion
channel for the annihilation cross-section.

The general procedure is to start from the Born tran-
sition amplitude V NN̄→nπ for annihilation into n (= 2
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and 3) pions and include the initial-state interaction in
distorted-wave Born approximation, so that the annihila-
tion amplitude TNN̄→nπ is given by

TNN̄→nπ = V NN̄→nπ + V NN̄→nπGNN̄→NN̄TNN̄→NN̄ ,
(1)

where GNN̄→NN̄ is the propagator for the NN̄ pair. The
NN̄ scattering amplitude TNN̄→NN̄ is obtained from the
solution of a Lippmann-Schwinger equation [9]

TNN̄→NN̄ = V NN̄→NN̄ + V NN̄→NN̄GNN̄→NN̄TNN̄→NN̄ .
(2)

In the work of the Jülich group the time-ordered for-
malism is invoked to cast eqs. (1) and (2) in tractable
(three-dimensional) form. The NN̄ interaction V NN̄→NN̄

and, in particular, the Born transition amplitudes for an-
nihilation into two mesons are likewise calculated within
time-ordered perturbation theory (TOPT). Here however,
in order to avoid the evaluation of the numerous graphs
that occur within TOPT for the Born transition ampli-
tude V NN̄→3π for annihilation into three pions, we prefer
to employ Feynman diagrams. We stress that these two
procedures imply different off-shell extrapolations of the
annihilation amplitudes and are therefore not equivalent.
Since we intend to use annihilation into two pions for the
determination of the free parameters in our model, we
need to maintain consistency between our treatments of
annihilation into two and three pions. Therefore, we will
use the Feynman prescription also to calculate the Born
transition amplitude V NN̄→2π for annihilation into two pi-
ons. Only the initial-state scattering amplitude TNN̄→NN̄

will be still computed in time-ordered formalism.
In the case of annihilation into two pions, the ampli-

tudes may be expanded in partial waves and the angu-
lar distribution and integrated cross-section calculated in
standard fashion. In the case of annihilation into three pi-
ons, the Monte Carlo method is used to perform the final
phase-space integration.

2.2 Annihilation amplitudes

In accordance with the Jülich NN̄ model we assume that
the dynamics of annihilation into pions is mediated by
nucleon and ∆ exchanges. Hence, the Born transition am-
plitudes V NN̄→nπ (n = 2, 3) are given by the sums of the
Feynman tree diagrams involving the NNπ, ∆Nπ and
∆∆π vertices, shown in fig. 1 and fig. 2. The complete
amplitudes are obtained by summing such diagrams over
all permutations of the final-state pions.

The contributions of the various diagrams are evalu-
ated using standard interaction Lagrangians, namely

LNNπ =
fNNπ

mπ
ψ̄Nγ5�τ · �∂�φ ψN , (3)

L∆Nπ =
f∆Nπ

mπ
ψ̄ µ

∆
�T · ∂µ

�φψN + h.c. , (4)

L∆∆π = −f∆∆π

mπ
ψ̄∆µ γ5�I· �∂�φψµ

∆ , (5)

Fig. 1. Born transition amplitude for NN̄ → 2π.

Fig. 2. Born transition amplitude for NN̄ → 3π.

where �I is the ∆ isospin operator and �T the N → ∆ tran-
sition isospin operator (we use the normalization conven-
tions of ref. [21] for these operators).

The corresponding vertex factors in Feynman dia-
grams are

VNNπ = −fNNπ

mπ
γ5τ i �q , (6)

V∆Nπ = −f∆Nπ

mπ
qµT i + h.c. , (7)

V∆∆π =
f∆∆π

mπ
gµνγ5Ii �q , (8)

where qµ is the pion four-momentum and the index i spec-
ifies the pion isospin. The nucleon propagator takes the
standard form

iGN (p) = i
�p + mN

p2 − m2
N

. (9)

For the ∆ propagator, we adopt [22]

iGµν
∆ (p) = −i

�p + m∆

p2 − m2
∆

Θµν(p) , (10)

with

Θµν(p) ≡ gµν − γµγν

3
− 2pµpν

3m2
∆

+
pµγν − pνγµ

3m∆
. (11)

Two of the coupling constants appearing in the above
vertices are already used in the Bonn potential [23]
and Jülich NN̄ model [9], namely f2

NNπ/4π = 0.0778
and f2

∆Nπ/4π = 0.224. For the ∆∆π coupling, we shall
rely on the SU(2) × SU(2) quark model relation [24],
f∆∆π = 9

5fNNπ. This gives f2
∆∆π/4π = 0.252.

Form factors must be included in order to regular-
ize the calculation and to take into account the extended
hadron structure. We know from our experience with other
hadronic reactions that the results might depend sensi-
tively on those form factors, in particular when loop in-
tegrations like in eq. (1) are involved. Therefore, in order
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to investigate the sensitivity of our model to the details of
these form factors, we employ three different parametriza-
tions in the present study. In two of these we follow the
conventional assumption that the vertex form factor de-
pends only on the momentum of the exchanged particle,
i.e. the particle which is off-shell in the Born diagram.
For annihilation into three pions, the inner vertex con-
tains the product of two such form factors since there are
two off-shell particles attached to this vertex. Explicitly,
we employ the functions

FM (p) =
Λ2

αXπ − M2
X

Λ2
αXπ − p2

, (12)

and

FG(p) = exp

[
− (p2 − M2

X)2

Λ4
αXπ

]
. (13)

In these expressions, X stands for the type (N or ∆)
of the exchanged off-shell particle, MX for its mass and p
for its four-momentum; α denotes the type of the other
baryon present at the vertex and ΛαXπ represents the
cutoff mass corresponding to the αXπ vertex. In prin-
ciple, four independent cutoff masses have to be speci-
fied: one for the NNπ vertex, characterizing an off-shell
nucleon, two for the ∆Nπ vertex, characterizing an off-
shell nucleon or an off-shell ∆, respectively, and one for
the ∆∆π vertex, characterizing an off-shell ∆. In or-
der to reduce the number of free parameters, we assume
ΛN∆π = Λ∆Nπ = Λ∆∆π ≡ Λ∆. The procedure for fixing
the values of the remaining independent cutoff parameters
(ΛNNπ ≡ ΛN and Λ∆) will be discussed in sect. 3. In the
following we will refer to those form factors as monopole
(eq. (12)) and Gaussian (eq. (13)), respectively.

The third type of regularization we consider attributes
a damping factor to each line in the Born diagrams, includ-
ing the external legs. Specifically we use a parametrization
introduced by B. Pearce [25] and later by C. Schütz [26]
in their studies of the πN system which is given by

FP (p) =
Λ4

X

Λ4
X + (p2 − M2

X)2
, (14)

with ΛX the cutoff mass associated with a baryon line of
type X. Note that, in principle, a similar factor should be
applied to the pion lines as well. But since in our DWBA
calculation the pions are always on their mass shell this
factor will be identical to 1 and, therefore, can be omitted.
In the following we will refer to this choice as the Pearce
form factor.

In order to combine the Feynman annihilation ampli-
tudes with the initial-state distorted wave, it is necessary
to specify a prescription for the energy components of the
four-momenta of their external N and N̄ legs. We set both
equal to their on-energy-shell value (i.e., half the total
available energy in the center-of-mass frame).

2.3 Initial-state interaction

The NN̄ interaction V NN̄→NN̄ used to obtain the initial-
state distorted wave is that developed in ref. [9], with-

Fig. 3. Elastic part of the NN̄ interaction.

out modification. For completeness, we summarize here
its main features.

The interaction is made up of an elastic and an anni-
hilation part:

V NN̄→NN̄ = Vel + Vann. (15)

The elastic interaction is obtained through a G parity
transformation of the full Bonn NN potential [23], corre-
sponding to the diagrams shown in fig. 3.

The annihilation interaction consists of a microscopic
and a phenomenological piece:

Vann =
∑
ij

V MiMj→NN̄GMiMj V NN̄→MiMj + Vopt. (16)

The microscopic component is the sum of box diagrams
with two-meson intermediate states resulting from all pos-
sible combinations of π, η, ρ, ω, a0, f0, a1, f1, a2, f2, K and
K∗ mesons (fig. 4a). The transition potentials V NN̄→MiMj

are given by the baryon exchange diagrams presented in
fig. 5. The coupling constants and cutoff parameters at the
vertices of these transition potentials are quoted in table 1
of ref. [9]. Note that in ref. [9] these transition potentials
are employed also for the calculation of the amplitudes for
annihilation into a pion and a heavy meson M . Those am-
plitudes are obtained from equations analogous to eq. (1),
with V NN̄→πM as the Born term. The corresponding con-
tributions to the cross-sections for annihilation into three
pions will be used here without modification.

The phenomenological optical potential (fig. 4b) sim-
ulates the effect of contributions from annihilation into
more than two mesons, and is parametrized in coordinate
space as

Vopt = −iW exp
(
− r2

2r2
0

)
, (17)

with W = 1GeV and r0 = 0.4 fm. These values have been
obtained [9] through an overall fit to NN̄ integrated cross-
section data.
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Fig. 4. Microscopic (a) and phenomenological (b) annihilation
part of the NN̄ interaction.

Fig. 5. Transition potential for NN̄ → 2 mesons.

3 Results and discussion

As mentioned in the introduction, in a previous publica-
tion [12] aimed at acquiring a first idea of the relevance
of the uncorrelated channel to the pp̄ → π+π−π0 cross-
section, ∆ exchange was not included in the transition
amplitude. This, of course, is at variance with the dynam-
ics included in the treatment of the NN̄ → 2π amplitude,
where ∆ exchange is taken into account. The argument
invoked was that if one considers only the (dominant)
charged two-pion channel, one finds that the effect of ∆ ex-
change can be described phenomenologically by using an
effective value for the cutoff at the NNπ vertex. It turned
out that, in this rather crude treatment, the uncorrelated
channel adds a 10% contribution to the total pp̄ annihila-
tion cross-section into three pions, motivating a more sys-
tematic study. In subsequent studies, the exchange of one
∆ [13], and of two ∆’s [14] has been explored. While this
unified the dynamics of annihilation into two and three
pions, complete consistency was not achieved yet, since
the two-pion channel was treated with TOPT [9] while
for the three-pion channel, the Feynman prescription was
used [13,14]. More recently [15], first results of a calcula-
tion in which both two-pion and three-pion channels are
treated within the Feynman prescription were presented.
Here we explore more fully the predictions of this model.
Specifically we analyze the contributions of the uncorre-
lated three-pion channel not only to the charged but also
to the neutral annihilation cross-sections, and we show
predictions for various branching ratios as well. We also

Table 1. Cutoffs (in MeV) for the various form factors used in
the calculations. The first column gives the type of form factor;
the second one identifies the corresponding set. The headings
of the other columns specify the kind of cutoff.

Type Set ΛN Λ∆

Monopole A 1600 1300
Monopole B 1250 1550
Gaussian A 1300 1100
Gaussian B 1100 1320
Pearce A 1200 980
Pearce B 1050 1250

Table 2. Contributions to the pp̄ → π+π− cross-section (in
µb), calculated with different form factors (first column) and
parameter sets (second column). The third column gives the
laboratory kinetic energy (in MeV), the other columns differ-
ent contributions, specified by the exchanged baryon(s) in the
annihilation amplitude.

Form Factor Set Energy N ∆ N + ∆

Monopole A 65 609 1.8 685
220 322 1.1 332

Gaussian A 65 559 6.2 663
220 375 3.7 419

Pearce A 65 571 25 782
220 304 15 384

Monopole B 65 66 436 741
220 40 237 357

Gaussian B 65 62 424 693
220 54 260 414

Pearce B 65 182 353 847
220 104 189 404

investigate the effect of various choices of the vertex form
factors on our results and we explore the importance of
the contributions coming from the ∆ exchange diagrams.

3.1 pp̄ → π+π− cross-section

To get insight into the influence of the vertex form factors
on the results for pp̄ → 3π we accomplished fits to the
reaction pp̄ → π+π− using each of the three parametriza-
tions introduced in subsect. 2.2. Since it turned out that
the presently available data do not allow to determine
the relative magnitudes of the N and ∆ exchange con-
tributions unambiguously, we prepared two sets of mod-
els, one with ΛN larger than Λ∆ and the other with ΛN

smaller than Λ∆. Thus, we have in total six parameter
sets, all determined in such a way as to provide an ade-
quate description of the total and differential pp̄ → π+π−
cross-sections. The resulting values for the cutoff masses
are compiled in table 1. The parameter set A corresponds
to form factors which suppress ∆ exchange compared to
nucleon exchange. The parameter set B corresponds to a
quite strong ∆ exchange, hopefully providing some sort of
upper bound for the ∆ contribution when used to describe
annihilation into three uncorrelated pions later on.
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Fig. 6. pp̄ → π+π− cross-sections. The solid lines, long-dashed
lines and short-dashed lines correspond to our results with the
monopole, Gaussian and Pearce form factors. At top (bottom),
results with parameter set A (B). The data are from refs. [27–
29].

The results for the pp̄ → π+π− total cross-sections are
compared to the data [27–29] in fig. 6. Considering the
rather large experimental errors at low energy, all param-
eter sets can be said to provide an adequate description.
The relative importance of N and ∆ exchanges is illus-
trated in table 2, which shows their separate contribu-
tions to the cross-section at two sample energies. For the
parameter set A the contribution from ∆ exchange is in-
deed not very important. Turning it off reduces the cross-
sections by —at most, depending on the energy— 30%
(Pearce form factor) to 10% (monopole form factor). For
the Gaussian form factor, the reduction is by about 20%.
For the parameter set B, the ∆ exchange contribution
dominates over the N contribution, although, because of
the constructive interference between them, both contri-
butions are important in building up the cross-section.
One should note that the relative importance of N and ∆
exchanges results in general from a balance between two
competing effects. On the one hand, the larger coupling
constant at the ∆Nπ vertex favors ∆ exchange over N
exchange, but on the other hand, since the relevant kine-
matical region for the exchanged particle is space-like, it is
somewhat further away from the on-shell point for the ∆
than for the nucleon. This leads to a comparatively larger
propagator denominator and a stronger damping due to
form factors for the ∆.

The angular distributions are shown in fig. 7 for two
incident momenta. The quality of the results for other
measured incident momenta is similar to that of these two
sample cases. For forward scattering, the differential cross-
section looks reasonable for all parameter sets. For larger
incident momenta, a stronger ∆ contribution tends to pro-
duce a bending down of the cross-section at small angles
(see the case plab = 679 MeV/c with parameter set B).
This imposes an upper limit on the amount of ∆ contri-
bution which is acceptable. Let us note, however, that the
data at somewhat higher energies do indeed show such a
bending down in the forward direction [30]. With respect
to backward scattering our models fare rather poorly. But
this is expected and therefore not a reason of concern.
It is known that final-state interactions, not considered
here, play an important role for backward angles and do
improve the results significantly [31]. Also, it has been
argued [10] that a tensor coupling for the N∆π vertex
would enhance the differential cross-section around 100◦
for plab > 680 MeV/c.

3.2 pp̄ → π+π−π0 annihilation

3.2.1 Cross-section

The pp̄ annihilation into three pions has contributions
from three uncorrelated pions in addition to some two-
meson channels, involving a heavier meson (ρ, f0 and
f2), which decays subsequently into two pions with some
branching ratio (100%, 78% and 85%, respectively). The
two-meson channels have already been studied with the
Jülich model by Mull et al. [9]. Here we concentrate on the
uncorrelated three-pion contribution to the pp̄ → π+π−π0

cross-section.
Our results are shown in table 3 for the six parame-

ter sets of table 1, at two sample energies. For parameter
set A most of the cross-section comes from N exchange
and the contributions from one- and two-∆ exchanges are
negligible. For parameter set B, however, the one- and two-
∆ exchanges are sizeable. Especially for the Pearce form
factor, the cross-section is enhanced by almost a factor of
two when the ∆ exchange contributions are added. On the
other hand, the overall magnitude of the cross sections is,
in general, much smaller for set B than for set A, indicat-
ing that the increase due to the ∆ exchange contribution
for set B is by far not sufficient to compensate the re-
duction of the N exchange contribution. This means that
the relative importance of annihilation via ∆ exchange as
compared to N exchange is much smaller in the reaction
pp̄ → π+π−π0 than it is for pp̄ → π+π−. One reason for
this is that the number of possible charge combinations
of the exchanged baryons is larger for amplitudes involv-
ing ∆’s and the interferences between their contributions
tend to be destructive. The differences between the re-
sults obtained with different form factors are also easily
understood qualitatively. For the Pearce type, since the
factors are in effect associated with propagators, there is
one more factor for the three-pion annihilation amplitude,
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Fig. 7. pp̄ → π+π− differential cross-sections for plab = 360 MeV/c and for plab = 679 MeV/c. Same description of the curves
as in fig. 6. Experimental data are taken from ref. [30].

compared to the two-pion one. For the other types, how-
ever, the factors are associated with internal vertex legs
and therefore two more factors appear in the three-pion
amplitude. This makes the Pearce form factor yield less
suppression for annihilation into three pions. When two
baryons are exchanged, each one of them is not as far
off shell as when only one is exchanged. Therefore, be-
cause of its stronger variation with p2, the Gaussian form
cuts off less strongly for three-pion annihilation than the
monopole form factor.

The total experimental pp̄ → π+π−π0 cross-section
ranges from around 7 mb to 3 mb for energies from 65 MeV
to 220 MeV [27]. In comparison to these values, the cal-
culated uncorrelated cross-section varies from mere in-
significance (for monopole and Gaussian form factors with
parameter set B), to about 10% of the measured total
cross-section for the Gaussian form factor with parame-
ter set A. The relevance of the contribution from anni-
hilation into three uncorrelated pions might be best seen
from fig. 8, where our results for the three uncorrelated
pions are added to Mull’s results [9] for annihilation into
two-meson channels (ρπ, f0π and f2π), weighted with the
percentages of decay of the heavy mesons into two pions
and the isospin factors, and compared with the total ex-
perimental annihilation cross-section.

3.2.2 Branching ratios

A more detailed comparison can be made by considering
the experimental information from a specific antiproto-

Table 3. Uncorrelated-channel contribution to the
pp̄ → π+π−π0 cross-section (in µb), calculated with dif-
ferent form factors (first column) and parameter sets (second
column). The third column gives the laboratory kinetic energy
(in MeV), the other columns list the various contributions.

Form Factor Set Energy NN N∆ ∆∆ All

Monopole A 65 309 2.4 10−2 5.7 10−5 310
220 200 1.7 10−2 4.4 10−5 200

Gaussian A 65 760 3.5 10−2 1.3 10−2 760
220 535 4.3 10−1 1.4 10−2 535

Pearce A 65 603 3.2 2.4 10−1 620
220 404 2.8 1.9 10−1 403

Monopole B 65 13 3.8 1.7 20
220 8 2.5 1.2 12

Gaussian B 65 67 12 9.4 84
220 52 14 8.9 75

Pearce B 65 138 22 46 242
220 96 19 34 158

nium initial state. Annihilation of antiprotonic hydrogen
atoms into π+π−π0 has been studied by stopping antipro-
tons from LEAR in hydrogen gas by the ASTERIX Col-
laboration [17]. All NN̄ initial states for S and P waves
which may decay into π+π−π0 have been considered1,
namely 3S1 (I = 0), 1S0 (I = 1), 1P1 (I = 0), 3P1 (I = 1)

1 The G parity of the initial antiprotonium state is
G = (−1)L+S+I , and for a three-pion final state G = −1; this
determines the isospin quantum number I for each allowed
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Table 4. Ratios of branching ratios for pp̄ → π+π−π0. The experimental values are taken from the phenomenological analysis of
ref. [17]. The theoretical results are obtained as relative cross-sections at Elab = 5 MeV for different form factors and parameter
sets.

Form factor Set 3S1/
1S0

3P1/
1P1

3P2/
1P1

Monopole 3.3 1.7 1.4
Model Gaussian A 3.2 1.5 1.1

Pearce 3.9 1.7 1.8

Monopole 3.2 24.3 7.9
Model Gaussian B 2.9 7.1 5.6

Pearce 6.3 34.9 13.6

Experiment 1.9 2.9 3.8
State counting 3.0 1.0 1.67

Fig. 8. pp̄ → π+π−π0 cross-section as a function of the inci-
dent momentum. The sums of two-meson channels [9] plus our
results for the three uncorrelated-pion channel with the various
types of form factors and parameter sets stated in table 1 lie
inside the shadowed area. Experimental data are taken from
ref. [27].

and 3P2 (I = 1). The phenomenological analysis has been
made in terms of resonant amplitudes and a non-resonant
(phase-space) background. The contributions from the ρπ
channel have already been compared with the results of
the Jülich model [32]. The phase-space component has also
been compared with the uncorrelated three-pion contribu-
tion in the first, simplified version of our model, in which
∆ exchange was not considered explicitly. Here we use the
present model to compare our results with the experimen-
tal values.

As before [12,32], we assume that all the spin states
of a given orbital angular momentum in protonium are
populated with about the same probability and identify
the relative branching ratios for decay from a given atomic
state to the ratios between the contributions from the cor-
responding partial waves to the annihilation cross-section
at low energy. Although the cross-sections themselves vary

initial state. The 3P0 initial state is forbidden by angular-
momentum and parity conservation.

rapidly with energy, these ratios are almost constant for
small laboratory energies (a few MeV). Thus, like in our
previous work, we use cross-section ratios at 5 MeV.

Table 4 shows our results for the ratios of branching
ratios for NN̄ → π+π−π0 for various types of form factors
and parameter sets, compared to the experimental values
extracted from the phenomenological analysis of ref. [17].
An estimate based on ratios between numbers (2J + 1) of
available states is given as well.

Not surprisingly, for parameter set A, where N ex-
change is dominant, the results are very similar to our
previous ones [12], where ∆ exchange had not been con-
sidered at all. The theoretical 3S1/

1S0 ratios depend only
weakly on the dynamics. The predictions are close to the
value 3, which is expected on the basis of simple state
counting, though they tend to be, in general, larger than
the phenomenological value, especially for the Pearce form
factor. The theoretical 3P1/

1P1 ratios show some depen-
dence on the spin and isospin dynamics and are smaller
than the results of the phenomenological analysis by a
factor of about 2. For the 3P2/

1P1 ratio, the theoretical
results again depend weakly on the dynamics; however,
they also fall short of the experimental evidence by a fac-
tor of 2 to 3.

For parameter set B, where ∆ exchange is also rele-
vant, the 3S1/

1S0 ratios show the same general trends as
for set A, although the result for the Pearce form factor
is now considerably larger than the experimental value.
The 3P1/

1P1 and 3P2/
1P1 ratios, on the other hand, are

spectacularly larger than for set A and now overshoot the
experimental data by far. This effect originates from the
fact that, with our choices of vertices and propagators,
exchanges involving ∆’s make a very small contribution
to the 1P1 partial wave. Consequently, if form factors are
chosen such as to suppress the NN exchange contribution
(as is the case for set B), the total contribution of that
partial wave to the cross-section is small and the 3P1/

1P1

and 3P2/
1P1 ratios are large. The fact that the experimen-

tal values for these ratios lie between our results for sets
A and B is in accordance with our objective of these sets
as extremes between which realistic values for the cutoffs
are confined.
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Fig. 9. pp̄ → π0π0 differential cross-sections for plab = 360 MeV/c and for plab = 600 MeV/c. The same description of the
curves as in fig. 6. Experimental data are taken from ref. [34].

3.3 Annihilation into neutral pions

Some experimental results for pp̄ annihilation into neutral
pions have been published already a long time ago [33].
But only very recently, for the first time, data at beam
momenta below 1 GeV/c have been made available by
the Crystal Barrel Collaboration for annihilation into
2π0’s [34,35]. Specifically, their measurement at a labo-
ratory momentum of 600 MeV/c is still within the limit
of validity of our model and, therefore, it is possible to
compare our results with those data, as we shall do in
this section. We emphasize that all our parameter sets
were fixed by the annihilation into two charged pions, as
discussed above. Thus, the results presented here for the
reactions pp̄ → 2π0 as well as pp̄ → 3π0 are genuine pre-
dictions of our model.

3.3.1 pp̄ → 2π0 annihilation

For the reaction pp̄ → 2π0 there are high-statistics data
taken at LEAR in the momentum range 600–1940 MeV/c
[34] 2. In fig. 9, we compare the differential cross-sections
predicted by our model with the data of ref. [34] at the lab-
oratory momentum plab = 600 MeV/c. (The next higher
energy measured, plab = 900 MeV/c, is already beyond
the valitidy range of our model and therefore we refrain
from comparing our model with those data.) Note that

2 These data show a systematic disagreement in normaliza-
tion with the earlier data [33], i.e. the cross-sections are a factor
of more than 2 larger.

the normalization is such that the area under the curve
times 2π gives the corresponding total annihilation cross-
section.

It can be seen that the predictions for the differential
cross-section at small angles are reasonable for parameter
set A, i.e. for the models where nucleon exchange is the
dominant annihilation process. However, for parameter set
B, which corresponds to models with a large contribution
from ∆ exchange, we observe a serious disagreement with
the data. Obviously the ∆ exchange tends to bend down
the differential cross-section at small angles, something
which we also noticed for the charged case. For angles
near 90◦ the Pearce form factor yields a contribution too
high for both parameter sets whereas all other models are
in rough agreement with the data.

Predictions at a lower laboratory momentum,
plab = 360 MeV/c, are also shown in fig. 9 though at this
energy there are presently no data available.

The experimental total cross-section for pp̄ → π0π0

given in ref. [34] was obtained by integrating only
over the limited range cos(θ) = 0 to 0.85. Thus, we do
the same for obtaining the theoretical cross-sections at
plab = 600 MeV/c, which are compiled in table 5. The
model predictions range from values close to the exper-
imental ones, to values that are too large by a factor of 2
to 3. The contributions from the individual annihilation
mechanisms (N and ∆ exchange, respectively) are listed
in table 6 for all considered parameter sets. Not unexpect-
edly, the general features are very similar to those found
for the annihilation into two charged pions. N exchange
dominates in case of parameter set A, while ∆ exchange
provides the larger contribution for the parameter set B.
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Table 5. Cross-section for pp̄ → π0π0 at 600 MeV/c, inte-
grated over angles from cos(θ) = 0 to 0.85. The data is from
ref. [34].

Type Set Cross-section (µb)

Monopole A 53.8
Monopole B 106.9
Gaussian A 80.7
Gaussian B 119.8
Pearce A 100.4
Pearce B 126.5

Experiment 54.4

Table 6. The same as table 2 for the pp̄ → π0π0 annihilation.

Form Factor Set Energy N ∆ N + ∆

Monopole A 65 173 8.1 10−1 195
220 62 4.5 10−1 70

Gaussian A 65 232 3 283
220 92 1.7 112

Pearce A 65 257 11.9 359
220 87 6.7 127

Monopole B 65 21 197 328
220 8 100 146

Gaussian B 65 20 204 323
220 13 120 175

Pearce B 65 81 167 397
220 29 83 167

The interference between N and ∆ exchanges is generally
constructive.

3.3.2 pp̄ → 3π0 annihilation

Our results for the cross-section for pp̄ annihilation into
three uncorrelated neutral pions at plab = 600 MeV/c are
compiled in table 7. The values range from 2.2 µb (for
parameter set B with monopole form factor) to 37.8 µb
(for parameter set A with Gaussian form factor). The
corresponding experimental value for the total annihi-
lation cross-section (which includes contributions from
three uncorrelated pions as well as from two-meson an-
nihilation channels that finally decay into three pions) is
356 ± 18 µb [20]. Thus, like already for the case of charged
pions, it turns out that the annihilation into three un-
correlated π0’s could amount to up to 10% of the total
3π0 annihilation cross-section. This suggests that such a
“non-resonant background” contribution should perhaps
be included in detailed phenomenological analyses aimed
at identifying new hadronic states [18–20].

The contributions from the individual annihilation
mechanisms can be seen in table 8. As for the charged
case, it turns out that annihilation via N∆ as well as
via double-∆ exchange is negligible for parameter set A.
For parameter set B, NN and N∆ exchanges yield simi-
lar contributions, while ∆∆ exchange remains practically
negligible. However, the overall size of the cross-section is
again much less than for set A. The comparison made in

Table 7. Uncorrelated contribution to the cross-section for
pp̄ → π0π0π0 at plab = 600 MeV/c, calculated with different
form factors and parameter sets. Note that the experimental
total annihilation cross-section (which includes the uncorre-
lated as well as correlated contributions) is 356 ± 18 µb [20].

Type Set σ(µb)

Monopole 13.5
Gaussian A 37.8
Pearce 31.8

Monopole 2.2
Gaussian B 7.2
Pearce 16.0

Table 8. The same as table 3 for the pp̄ → π0π0π0 annihila-
tion. All cross-sections are given in µb.

Form Factor Set Energy NN N∆ ∆∆ All

Monopole A 65 24 9.6 10−3 8.4 10−7 25
220 11 4.3 10−3 4.9 10−7 12

Gaussian A 65 73 0.097 3.3 10−4 74
220 32 0.060 2.6 10−4 31

Pearce A 65 51 1.2 3.6 10−3 60
220 23 0.53 2.4 10−3 27

Monopole B 65 1.0 1.6 0.025 4.2
220 0.46 0.75 0.014 1.9

Gaussian B 65 7.8 4.3 0.22 14
220 3.6 2.2 0.15 6.4

Pearce B 65 12 9.7 0.53 31
220 5.6 4.6 0.32 14

subsect. 3.2.1 between the various types of form factors
applies to the present case also.

4 Summary

In this paper we have presented results of a study of
proton-antiproton annihilation into two and three pions in
a baryon exchange model. Specifically, we have taken into
account contributions from N exchange as well as from ∆
exchange consistently in the two- and three-pion annihila-
tion channels. The free parameters of our model, the cutoff
masses in the form factors at the NNπ and N∆π vertices,
were determined by the available experimental data on
pp̄ → π+π−. Thus, the results for the other annihilation
channels considered, pp̄ → π0π0 as well as pp̄ → π+π−π0

and pp̄ → π0π0π0, can be regarded as genuine predictions
of the model.

The main aim of our work was to study and discuss the
relative importance of NN , N∆ and ∆∆ exchanges for an-
nihilation into three pions. For that purpose we prepared
two sets of models which describe the cross-sections of the
reaction pp̄ → π+π− with comparable quality but have
dominant contributions from either N or ∆ exchange. In
addition we employed three different analytical forms for
the vertex form factors in order to explore the sensitivity
of our results to these ingredients of our model.

It turned out that the contributions from annihilation
diagrams involving the ∆ isobar are, in general, much less
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important for the three-pion channel than they are for
annihilation into two pions. Specifically, for those mod-
els where the N exchange dominates the two-pion decay
we found the ∆ exchange contributions to the three-pion
decay to be completely negligible. Even in those models
where ∆ exchange plays a major role in the two-pion chan-
nel, there is only a moderate effect from the ∆ exchange in
the three-pion channel. As a consequence, the total annihi-
lation cross-section into three uncorrelated pions is usually
significantly larger if we assume that N exchange domi-
nates the two-pion decay.

Not unexpectedly, the actual magnitude of the total
three-pion annihilation cross-section depends to a certain
extent on the choice for the vertex form factors. This
dependence is strongly reduced by requiring consistency
between the treatment of the two- and three-pion decay
channels, but ultimately cannot be avoided because it is
already inherent in the specific functions used for the an-
alytic forms of the form factor. With due concession for
these uncertainties, our calculations show that the con-
tributions of annihilation into three uncorrelated pions to
the total three-pion annihilation cross-section are by no
means negligible. Indeed they might provide up to 10%
of the total cross-section for pp̄ → π+π−π0 as well as for
pp̄ → 3π0.

The results obtained in this work can also be invoked to
assess the general viability of the baryon exchange model
of nucleon-antinucleon annihilation. Although the two-
pion and uncorrelated three-pion final states make only
rather tiny contributions to the total annihilation process,
the relative sizes of the cross-sections for these two chan-
nels can be used as a hint to evaluate the possibility of
describing most if not all of annihilation in the baryon ex-
change framework. The cross-sections for annihilation into
two pions are of the order of a fraction of a millibarn in
the energy region we have considered. The cross-sections
predicted by the baryon exchange model for annihilation
into three uncorrelated pions (taking a rough average of
the extreme cases considered in this work, see table 3) are
of the same order of magnitude. This is perhaps surpris-
ing since one might have thought that the need for more
vertices and propagators —therefore more form factors—
would suppress final states of more than two mesons in
such models. Remembering that, according to the calcu-
lations of ref. [9], annihilation into two mesons, summed
over all meson types, amounts to about 30% of the to-
tal experimental annihilation cross-section, it is tempting
to generalize the results found here for pions to speculate
that annihilation into three mesons, when summed over all
meson types, could easily account for a similar percentage
of the whole process. Since it seems that multi-meson fi-
nal states are not strongly suppressed in baryon exchange
models, states with four or more mesons could then easily
account for the remaining of the cross-section. Of course,
such qualitative speculations could only be confirmed by
detailed calculations, which would constitute a formidable
task, but it can at least be claimed that the possibility of
explaining the bulk of the annihilation process in a baryon
exchange picture is not ruled out.
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21. Ch. Schütz, diploma thesis, Universität Bonn 1992;

Berichte des Forschungszentrums Jülich No. 2733, 1992.
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